			100	
M1. (a)	M1	550 ×	95	= 579 g would be 100% mass
				Allow alternative methods.
				There are 4 process marks:

1

M2 So
$$\frac{579}{65} = 8.91 \text{ moles NaN}_3$$

or
M1 $\frac{550}{65} = 8.46 \text{ moles NaN}_3 \text{ (this is 95%)}$
M2 So 100% would be $8.46 \times \frac{100}{95} = 8.91 \text{ moles NaN}_3$
1: mass $\div 65$
2: mass or moles $\times 100 / 95 \text{ or } \times 1.05$
3: moles NaN_3 $\times 2$
4: moles NaNH₂ $\times 39$

1

	Then M3 Moles NaNH ₂ = 8.91 $\times 2$ = (17.8(2) moles)			
	M4	mass NaNH ₂ = 17.8(2) <u>× 39</u>	1	
	M5	<u>693</u> or <u>694</u> or <u>695</u> (g) If 693, 694 or 695 seen to 3 sig figs award 5 marks	1	
(b)	M1	308 K and 150 000 Pa	1	

M2 n =
$$\frac{PV}{RT}$$
 or $\frac{150\ 000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$
M3 = 4.4(0) or 4.395 moles N₂

Allow only this answer but allow to more than 3 sig figs

1

1

	M4 Moles NaN ₃ = 4.395 $\times \frac{2}{3}$ (= 2.93) M4 is for M3 $\times \frac{2}{3}$	
	M4 is for M3 \times ³	1
	M5 Mass NaN ₃ = (2.93) $\times 65$ M5 is for moles M4 × 65	1
	M6 = 191 g	
	Allow 190 to 191 g allow answers to 2 sig figs or more	1
(c)	(i) $150 / 65 = 2.31$ moles NaN ₃ or 2.31 moles nitrous acid	
	1000	1
	$Conc = 2.31 \times 500$	
	M2 is for M1 × 1000 / 500	1
	4.6(1) or 4.6(2) (mol dm ⁻³)	
	Only this answer	1
	(ii) $3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$ Can allow multiples	1
(d)	Ionic	
(4)	If not ionic then $CE = 0/3$	1
	Oppositely charged <u>ions /</u> Na ⁺ and N₃ ⁻ ions Penalise incorrect ions here but can allow M3	1
	Strong <u>attraction</u> between (oppositely charged) ions / lots of energy needed to overcome (strong) <u>attractions</u> (between ions) <i>M3 dependent on M2</i>	I
(e)	(i) $N \equiv N \longrightarrow N^{-}$	1

Only

1

(ii)	CO ₂ / N ₂ O / BeF ₂ / HN ₃ Allow other correct molecules	1
(iii)	MgN ₆ Only	1
		[21]

M2.(a) Stage 1

 $M_{\rm r}$ for Mg(NO₃)₂ = 148.3

Moles of Mg(NO₃)₂ = $\frac{3.74 \times 10^{-2}}{148.3}$ = 2.522 × 10⁻⁴ mol Extended response calculation

1

1

1

1

Stage 2

Total moles of gas produced = $5/2 \times \text{moles of Mg(NO}_3)_2$

=
$$5/2 \times 2.522 \times 10^{-4}$$
 = 6.305×10^{-4}
If ratio in stage 2 is incorrect, maximum marks for stage 3 is 2

Stage 3

PV = nRT so volume of gas V = nRT / P

$$V = \frac{P}{P} = \frac{6.305 \times 10^{-4} \times 8.31 \times 333}{1.00 \times 10^{5}} = 1.745 \times 10^{-5} \text{ m}^{3}$$

 $V = 1.745 \times 10^{-5} \times 1 \times 10^{6} = 17.45 \text{ cm}^{3} = 17.5 \text{ (cm}^{3})$ Answer must be to 3 significant figures (answer could be 17.4 cm³ dependent on intermediate values)

1

(b) Some of the solid is lost in weighing product / solid is blown away with the gas

[6]

1

M3.(a) (i) Uses sensible scales. Lose this mark if the **plotted points** do not cover half of the paper. Lose this mark if the graph plot goes off the squared paper Lose this mark if volume is plotted on the x-axis 1 All points plotted correctly Allow ± one small square. 1 Smooth curve from 0 seconds to at least 135 seconds – the line must pass through or close to all points (± one small square). Make some allowance for the difficulties of drawing a curve but do not allow very thick or doubled lines. 1 (ii) Any value in the range 91 to 105 s Allow a range of times within this but not if 90 guoted. 1 (b) Using pV = nRT(i) This mark can be gained in a correctly substituted equation. 1 $100\ 000 \times 570 \times 10^{-6} = n \times 8.31 \times 293$ Correct answer with no working scores one mark only. 1 n = 0.0234 mol Do not penalise precision of answer but must have a minimum of 2 significant figures. 1 Mol of $ZnCO_3 = 0.0234$ (ii) Mark consequentially on Q6 M1 1 Mass of $ZnCO_3 = M1 \times 125.4 = 2.9(3)$ or 2.9(4) g

If 0.0225 used then mass = 2.8(2) g

	M2	1
	(iii) Difference = (15.00 / 5) – Ans to b	
	If 2.87 g used then percentage is 4.3	
	M1	1
		1
	Percentage = (M1 / 3.00) × 100	
	Ignore precision beyond 2 significant figures in the final answer	
	If 2.82 g used from (ii) then percentage = 6.0	
	М2	1
(c)	A reaction vessel which is clearly airtight round the bung	1
	Gas collection over water or in a syringe	
	Collection vessel must be graduated by label or markings	
	Ignore any numbered volume markings.	1 [13]

M4.B

[1]